Reading a math book cover to cover is a rite of passage for some, but the process can be pleasant or a nightmare; it can be rewarding or a mindless verification of theorems. This post is a guide to reading mathematics books, and is aimed for someone who is new at the process such as undergraduate or graduate students.

## 1. Find a book that suits your style of exploration

Some authors will be closer in line with your way of thinking than others. Unfortunately, it’s often quite difficult to tell which is which. One way that might help is reading through the first few pages of a book to give you a better impression of the author’s style. That, together with looking at the table of contents and introduction ought to be good enough to choose from a list of possible books on a given topic.

For example, I originally starting learning homological algebra through Mac Lane’s book ‘Homology’. After a while, it seemed as though the author was spending too much time on explicit descriptions of different homological constructions and less time on the big picture, or organising principles, though I didn’t know exactly what those were at the time. After about forty pages, I stopped and switched over to Weibel’s ‘An Introduction to Homological Algebra’, and it was much more pleasant and I ended up reading the entire book. This is, by the way, one of the rare times that I’ve actually finished an entire book.

More »