Category Archives: homological-algebra

Self Injective Integral Domains are Fields: Two Proofs

For finite commutative rings, integral domains are the same as fields. This isn't too surprising, because an integral domain $R$ is a ring such that for every nonzero $a\in R$ the $R$-module homomorphism $R\to R$ given by $r\mapsto ra$ is injective. Fields are those rings for which all these maps are surjective. But injective and […]


Flat Modules and Finitely Generated Submodules

Let $R$ be a ring and $M$ and $R$-module. If every finitely generated submodule of $M$ is flat, then so is $M$, because direct limits commute with the $\mathrm{Tor}$-functor. What about the converse? If $M$ is flat, are all its finitely generated submodules flat too? Not necessarily! In fact, here's a roundabout argument without an […]


Projective Principal Ideals, Idempotent Annihilators

Given an idempotent $e$ in a ring $R$, the right ideal $eR$ is projective as a right $R$-module. In fact, $eR + (1-e)R$ is actually a direct sum decomposition of $R$ as a right $R$-module. An easy nontrivial example is $\Z\oplus\Z$ with $e = (1,0)$. Fix an $a\in R$. If $aR$ is a projective right […]


Projectivity and the Double Dual

Projective modules are the algebraic analogues of vector bundles, and they satisfy some strong properties. To state one we will first introduce the notation $P^* := {\rm Hom}_R(P,R)$ for any right $R$-module $P$. (Working with right $R$-modules is just a convention) Here's one property that projective modules satisfy: if $P$ is a right projective module […]




Gaussian Rings and Flat Dimension

Let $R$ be any commutative ring. The content of a polynomial $f\in R[x]$ is by definition the two-sided ideal in $R$ generated by the coefficients of $f$. If $f,g\in R[x]$, then $c(fg)\subseteq c(f)c(g)$, because each coefficient of $fg$ is a linear combination of elements of $c(f)c(g)$. Sometimes, however, this inclusion is strict. For example, if […]


Weak Dimension At Most One Iff Every Ideal Is Flat

The flat dimension of an $R$-module $M$ is the infimum over lengths of flat resolutions of $M$, and the weak dimension (or $\mathrm{Tor}$-dimension) of $R$ is the supremum over all possible flat dimensions of modules. Let's use $\mathrm{w.dim}(R)$ to denote the weak dimension of $R$. As with the global dimension, the weak dimension of $R$ […]


Local Rings of Weak Dimension Zero are Division

Let $R$ be a ring and $M$ be an $R$-module. The flat dimension of $M$ is the infimum over all lengths of flat resolutions of $M$. Usually, the flat dimension of $M$ is denoted by $\mathrm{fd}_R(M)$. For example, $\mathrm{fd}_{\mathbb{Z}}(\mathbb{Q}) = 0$. Since $\mathbb{Q}$ has projective dimension $1$, the flat dimension and projective dimension of a […]


Yet Another non-Free Finitely Generated Projective

In the post Examples: Projective Modules that are Not Free, we saw nine examples of projective modules that are not free. On in particular was 'the' submodule $M = \oplus_{i=1}^\infty \mathbb{Z}$ of $\prod_{i=1}^\infty\mathbb{Z}$. Now, that's a cool example to be sure, but the way we showed that $M$ was not free was to cite that […]