Category Archives: ring-theory

Abelian categories: examples and nonexamples

I've been talking a little about abelian categories these days. That's because I've been going over Weibel's An Introduction to Homological Algebra. It's a book I read before, and I still feel pretty confident about the material. This time, though, I think I'm going to explore a few different paths that I haven't really given […]


Working with group rings in Sage

Let $\Z[\Z/n]$ denote the integral group ring of the cyclic group $\Z/n$. How would you create $\Z[\Z/n]$ in Sage so that you could easily multiply elements? First, if you've already assigned a group to the variable 'A', then

will give you the corresponding group ring and store it in the variable 'R'. The first […]


Strong Nilpotence and the Jacobson Radical

In the previous post we saw the following definition for a ring $R$: An element $r\in R$ is called strongly nilpotent if every sequence $r = r_0,r_1,r_2,\dots$ such that $r_{n+1}\in r_nRr_n$ is eventually zero. Why introduce this notion? Well, did you know that every finite integral domain is a field? If $R$ is an integral […]


Nilpotent and Strongly Nilpotent

Let $R$ be an associative ring. An element $r\in R$ is called nilpotent if $r^n = 0$ for some $n$. There is a stronger notion: an element $r\in R$ is called strongly nilpotent if every sequence $r = r_0,r_1,r_2,\dots$ such that $r_{n+1}\in r_nRr_n$ is eventually zero. How are these two related? It is always the […]