In the previous post we saw the following definition for a ring $R$: An element $r\in R$ is called **strongly nilpotent** if every sequence $r = r_0,r_1,r_2,\dots$ such that $r_{n+1}\in r_nRr_n$ is eventually zero. Why introduce this notion?

Well, did you know that every finite integral domain is a field? If $R$ is an integral domain and $a\in R$ is *nonzero*, then the multiplication map $R\to R$ given by $x\mapsto ax$ is injective. If $R$ is finite, then it must also be surjective so $a$ is invertible!

Another way of stating this neat fact is that if $R$ is any ring and $P$ is a prime ideal of $R$ such that $R/P$ is finite, then $P$ is also a maximal ideal. A variation of this idea is that every prime ideal in a finite commutative ring is actually maximal. Yet another is that finite commutative rings have Krull dimension zero.

More »