Category Archives: math

Anything mathematical.

## A quick intro to Galois descent for schemes

This is a very quick introduction to Galois descent for schemes defined over fields. It is a very special case of faithfully flat descent and other topos-descent theorems, which I won't go into at all. Typically, if you look up descent in an algebraic geometry text you will quickly run into all sorts of diagrams […]

## Dividing a square into triangles of equal area

Take a square and divide it down a diagonal, dividing the square into two triangles. Drawing the opposite diagonal now divides it into four triangles. In these two examples, we divided a square into an even number of triangles, all with equal area. Can we divide a square into an odd number of nonoverlapping triangles, […]

## Finite-dimensional k[x]-modules: projective or not?

Let's suppose $M$ is a nonzero projective $\Z$-module. Can it be finite? Nope. I'm sure there are plenty ways to prove it, but one way is to observe that a projective $\Z$-module is free, and hence if $M$ is nonzero it must have at least one copy of $\Z$. So, $M$ is infinite. What's the […]

## Explicit example showing non-residual finiteness

This is mostly a continuation on the group I gave in the last post, which is given by the presentation $$G = \langle a,t ~|~ t^{-1}a^2t = a^3\rangle.$$ At the risk of beating a dead horse, I proved that the homomorphism $f:G\to G$ given on generators by $f(t) = t$ and $f(a) = a^2$ is […]

## Yet another group that is not Hopfian

A few weeks ago I gave an example of a non-Hopfian finitely-presented group. Recall that a group $G$ is said to be Hopfian if every surjective group homomorphism $G\to G$ is actually an isomorphism. All finitely-generated, residually finite groups are Hopfian. So for example, the group of the integers $\Z$ is Hopfian. Another example of […]

## A zero-dimensional ring that is not von Neumann regular

An associative ring $R$ is called von Neumann regular if for each $x\in R$ there exists a $y\in R$ such that $x = xyx$. Now let $R$ be a commutative ring. Its dimension is the supremum over lengths of chains of prime ideals in $R$. So for example, fields are zero dimensional because the only […]

## A finitely generated flat module that is not projective

Let's see an example of a finitely-generated flat module that is not projective! What does this provide a counterexample to? If $R$ is a ring that is either right Noetherian or a local ring (that is, has a unique maximal right ideal or equivalently, a unique maximal left ideal), then every finitely-generated flat right $R$-module […]

## Kourkovka Notebook: Open problems in group theory

Every once in a while I spot a true gem on the arXiv. Unsolved Problems in Group Theory: The Kourkovka Notebook is such a gem: it is a huge collection of open problems in group theory. Started in 1965, this 19th volume contains hundreds of problems posed by mathematicians around the world. Additionally, problems solved […]

## Britton's lemma and a non-Hopfian fp group

In a recent post on residually finite groups, I talked a bit about Hopfian groups. A group $G$ is Hopfian if every surjective group homomorphism $G\to G$ is an isomorphism. This concept connected back to residually finite groups because if a group $G$ is residually finite and finitely generated, then it is Hopfian. A free […]

## Commutators and the Ore Conjecture

In a talk yesterday by Boris Kunyavski at the University of Ottawa, I learned a little about the Ore conjecture, which in 2010 was proved a theorem in: Liebeck, Martin W.; O'Brien, E. A.; Shalev, Aner; Tiep, Pham Huu. The Ore conjecture. J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 939-1008. It's quite a […]