Projectivity and the Double Dual

Projective modules are the algebraic analogues of vector bundles, and they satisfy some strong properties. To state one we will first introduce the notation $P^* := {\rm Hom}_R(P,R)$ for any right $R$-module $P$. (Working with right $R$-modules is just a convention)

Here's one property that projective modules satisfy: if $P$ is a right projective module over a ring $R$ then the natural map
$$e:P\to P^{**}$$
given by $e(p)(f) = f(p)$ is a monomorphism—which, in the category of $R$-modules, just means that $e$ is injective. The first question should be: is it ever not an isomorphism? The lack of surjectivity for $e$ can already be found when $R = k$ is a field.

Here, if $P = \oplus_I k$ then ${\rm Hom}_k(\oplus_I k,k) = \prod_I k$ so the dual has strictly greater cardinality as soon as $I$ is an infinite set. In fact, this same argument shows that the $P$ cannot be isomorphic to $P^{*}$, let alone $P^{**}$ whenever $P$ is not finitely generated.

But $e$ is always a monomorphism whenever $P$ is projective. If $P$ is arbitrary, then $e$ may not be a monomorphism. For example if $R = \Z$ then $P=\Z/2$ is a counterexample. ${\rm Hom}_\Z(\Z/2,\Z) = 0$. Another more striking example is $P = \Q$, the rational numbers. So, $e$ may fail to be a monomorphism even when $P$ is flat.

Can you give any examples of $e$ being a monomorphism even when $P$ is not projective?