# Flat Modules and Finitely Generated Submodules

Let $R$ be a ring and $M$ and $R$-module. If every finitely generated submodule of $M$ is flat, then so is $M$, because direct limits commute with the $\mathrm{Tor}$-functor. What about the converse? If $M$ is flat, are all its finitely generated submodules flat too?

Not necessarily! In fact, here's a roundabout argument without an actual counterexample: we've already seen that the weak dimension of a ring is less than or equal to one iff every ideal is flat. And, for Noetherian rings, the weak dimension is the same as the global dimension. For a field, the global dimension of $k[X]:=k[x_1,\dots,x_n]$ is $n$ and so if $n\geq 2$ then $k[X]$ must have ideals that are not flat, and yet each ideal is finitely generated. Hence $k[X]$ as a $k[X]$-module is flat (as it's free) but has finitely generated $k[X]$-submodules that cannot be flat.

Amusingly, this counterexample is also a counterexample to the statement that to any conjecture one should give either a proof or an explicit counterexample!

Hint: for an actual counterexample, $(x,y)$ in $k[x,y]$ works!