Tag Archives: idempotents

Replacing two idempotents with one

Let $R$ be a commutative ring. Two idempotents $e$ and $f$ are called orthogonal if $ef = 0$. The archetypal example is $(0,1)$ and $(1,0)$ in a product ring $R\times S$. Let $e$ and $f$ be orthogonal idempotents. Then the ideal $(e,f)$ is equal to the ideal $(e + f)$. To see, this first note […]

Projective Principal Ideals, Idempotent Annihilators

Given an idempotent $e$ in a ring $R$, the right ideal $eR$ is projective as a right $R$-module. In fact, $eR + (1-e)R$ is actually a direct sum decomposition of $R$ as a right $R$-module. An easy nontrivial example is $\Z\oplus\Z$ with $e = (1,0)$. Fix an $a\in R$. If $aR$ is a projective right […]