## Determinants, Permutations and the Lie Algebra of SL(n)

Here is an old classic from linear algebra: given an $ n\times n$ matrix $ A = (a_{ij})$, the determinant of $ A$ can be calculated using the permuation formula for the determinant: $ \det(A) = \sum_{\sigma\in S_n} (-1)^\sigma a_{1\sigma(1)}\cdots a_{n\sigma(n)}$. Here $ S_n$ denotes the permutation group on $ n$ symbols and $ (-1)^\sigma$ […]