# An abelian group projective over its endomorphism ring

Posted by Jason Polak on 16. January 2017 · Write a comment · Categories: commutative-algebra · Tags:

An abelian group $A$ is a left $E = {\rm End}(A)$-module via $f*a = f(a)$. If $B$ is a direct summand of $A$ as an abelian group, then ${\rm Hom}(B,A)$ is also a left $E$-module and is in fact a direct summand of $E$ as an $E$-module, so it is $E$-projective. In particular, if $B = \Z$, then ${\rm Hom}(B,A)\cong A$ as $E$-modules. Thus $A$ is a projective $E$-module whenever $A$ has $\Z$ as a direct-summand.

These observations allow us to construct projective modules that often aren’t free over interesting rings. Take the abelian group $A = \Z\oplus \Z$ for instance. Its endomorphism ring $E$ is the ring $M_2(\Z)$ of $2\times 2$ matrices with coefficients in $\Z$. As we have remarked, $\Z\oplus \Z$ must be projective as an $M_2(\Z)$-module.

Is $\Z\oplus\Z$ free as an $M_2(\Z)$-module? On the surface, it seems not to be, but of course we need proof. And here it is: for each element of $\Z\oplus \Z$, there exists an element of $M_2(\Z)$ annihilating it. Such a thing can’t happen for free modules.

One might wonder, is every $M_2(\Z)$-module projective? Or in other words, is $M_2(\Z)$ semisimple? Let’s hope not! But $M_2(\Z)$ is thankfully not semisimple: $\Z/2\oplus\Z/2$ is a $M_2(\Z)$-module that is not projective: any nonzero element of $M_2(\Z)$ spans a submodule of infinite order, and therefore so must any nonzero element of a nonzero projective.

# Projectivivity and Compositions of Ring Homomorphisms

Posted by Jason Polak on 26. November 2016 · Write a comment · Categories: commutative-algebra · Tags:

Let $A\to B\to C$ be ring homomorphisms. Consider the following statements:

1. $B$ is a projective $A$-algebra,
2. $C$ is a projective $B$-algebra,
3. $C$ is a projective $A$-algebra.
Question. Which pairs of these statements imply the third?

# Projective Principal Ideals, Idempotent Annihilators

Given an idempotent $e$ in a ring $R$, the right ideal $eR$ is projective as a right $R$-module. In fact, $eR + (1-e)R$ is actually a direct sum decomposition of $R$ as a right $R$-module. An easy nontrivial example is $\Z\oplus\Z$ with $e = (1,0)$.

Fix an $a\in R$. If $aR$ is a projective right $R$-module, however, that doesn’t mean that $a$ is an idempotent. In fact $aR$ is projective whenever $a$ is a nonzerodivisor, and in this case $aR$ is just isomorphic to $R$ itself as a right $R$-module.

So how do idempotents come into play in general? It turns out we have to look at annihilators! The right annihilator of $e$ is the right ideal $(1-e)R$. Indeed, $e(1-e) = 0$. And, if $er = 0$, then $(1 – e)r = r$, so anything that annihilates $e$ is a multiple of $(1-e)$. So we see that the annihilator of $eR$ is $(1-e)R$.

What about in general? It turns out that if $aR$ is projective, the right annihilator of $a$ must be of the form $eR$ for an idempotent $e$. Indeed, if $aR$ is projective, then the map $R\to aR$ given by $r\mapsto ar$ has a splitting $\varphi:aR\to R$. I’ll leave it as an exercise to show that the right annihilator of $a$ is $(1 – \varphi(a))R$, and that $1 – \varphi(a)$ is in fact an idempotent.

Conversely, if the right annihilator of an $a\in R$ is of the form $eR$ for some idempotent, then multiplication by $1-e$ gives the splitting of the natural map $R\to aR$, so $aR$ must be projective.

# Examples: Projective Modules that are Not Free

Here are nine examples of projective modules that are not free, some of which are finitely generated.

## Direct Products

Consider the ring $R= \Z/2\times\Z/2$ and the submodule $\Z/2\times \{0\}$. It is by construction a direct summand of $R$ but certainly not free. And it’s finitely generated! Another example is the submodule $\Z/2\subset \Z/6$, though this is the same kind of thing because $\Z/6\cong\Z/2\times\Z/3$. This was the first example I ever saw of a nonfree projective module.

## Infinite Direct Products

One can modify the above construction for infinite direct products of rings, too. For instance, $R = \prod_{i=1}^\infty \Z$ contains $\Z$ as a direct summand. Hence $\oplus_{i=1}^\infty\Z$ is a projective $R$ module, yet cannot be free since nonzero free modules are uncountable.

## Ideals in Dedekind Domains

In a Dedekind domain $R$, take an ideal representing a nontrivial element in the class group. It will then be projective. As an example, the class number of $\Z[\sqrt{5}]$ is two, and the ideal $(2,1+\sqrt{5})$ represents the nontrivial element in the class group. It is not free since it is not principal, and it is finitely generated projective since it is invertible.

More generally, for any ring extension of commutative rings $R\subseteq S$, one may define invertible $R$-submodules of $S$ as it is done for Dedekind domains. Then any invertible $R$-submodule of $S$ will be finitely-generated and projective. For more details and a further example, see Lam’s ‘Lectures on Modules and Rings’, Sections 2B-2C.

# Projectives and the Devious Determinant

The determinant is certainly a fascinating beast. But what is the determinant? Is it a really just a number or a function on matrices? In this post I hope to convince you that the answer is ‘no’. In fact, we will see that the determinant, suitably modified, can be used to classify certain types of projective modules over nice rings.

### Determinants of Matrices

Let $R$ be a commutative ring and $n$ be a natural number. Just as in the case of vector spaces, an $R$-module map $f:R^n\to R^n$ can be given by an $n\times n$ matrix with coefficients in $R$. Moreover, we can compute the determinant of this matrix just as in linear algebra. In fact, various notions of “determinants” also exist when $R$ is not commutative, but we will stick with the commutative case.
More »