# Zero divisor graph of a commutative ring

Let $R$ be a commutative ring. The zero divisors of $R$, which we denote $Z(R)$ is the set-theoretic union of prime ideals. This is just because in any commutative ring, the set of subsets of $R$ that can be written as unions of prime ideals is in bijection with the saturated multiplicatively closed sets (the multiplicatively closed sets that contain the divisors of each of their elements).

Istvan Beck in 1986* introduced an undirected graph (in the sense of vertices and edges) associated to the zero divisors in a commutative ring. Recall that an undirected graph is just a set of vertices (points) and edges connecting the point. What is his graph? His idea was to let the vertices correspond to points of $R$, and the edges correspond to the relation than the product of the corresponding elements is zero.

There is a slightly different definition due to Anderson and Livingston, which is the main one used today. Let $Z(R)^*$ denote the nonzero zero divisors. Their graph is $\Gamma(R)$, which is defined as the graph whose vertices are the elements of $Z(R)^*$, and whose edges are defined by connecting two distinct points if and only if their product is zero. Naturally, if $Z(R)^*$ is not empty then the resulting graph $\Gamma(R)$ will have some edges. The actual information contained in $\Gamma(R)$ is pretty much the same as the information contained in Beck's version and so we'll just stick with $\Gamma(R)$.

For this idea to be more than just a curiosity, the graph theoretic properties of $\Gamma(R)$ should tell us something about hte ring theoretic properties of $R$. Does it? Anderson and Livingston showed in 1998 that there exists a vertex of $\Gamma(R)$ adjacent to every other vertex if and only if either $R = \Z/2\times A$ where $A$ is an integral domain or $Z(R)$ is an annihilator. They also showed that for $R$ a finite commutative ring, if $\Gamma(R)$ is complete, then $R\cong \Z/2\times \Z/2$ or $R$ is local with characteristic $p$ or $p^2$.

Akbari, Maimani, and Yassemi found something curious in 2002 though: if $R$ is a local ring with at least 33 elements, then the graph $\Gamma(R)$ is not planar. (In graph theory, a graph is called planar if it can be drawn in a 2-dimensional plane with the edges intersecting only at their endpoints.)

Akbari and Mohammadian got pretty interesting results about $\Gamma(R)$ in 2004. They showed that if $R$ is a finite ring with no nontrivial nilpotent elements that is not $\Z/2\times \Z/2$ or $\Z/6$ and $S$ is such that $\Gamma(R)\cong \Gamma(S)$ as graphs then $R\cong S$. So basically for finite reduced rings, the set of zero divisors under multiplication very nearly determines the ring itself!

* Note: Years quoted in this post are the years of the published papers.